\[\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\C}{\mathbb C}
\newcommand{\ba}{\mathbf{a}}
\newcommand{\bb}{\mathbf{b}}
\newcommand{\bc}{\mathbf{c}}
\newcommand{\bd}{\mathbf{d}}
\newcommand{\be}{\mathbf{e}}
\newcommand{\bff}{\mathbf{f}}
\newcommand{\bh}{\mathbf{h}}
\newcommand{\bi}{\mathbf{i}}
\newcommand{\bj}{\mathbf{j}}
\newcommand{\bk}{\mathbf{k}}
\newcommand{\bN}{\mathbf{N}}
\newcommand{\bn}{\mathbf{n}}
\newcommand{\bo}{\mathbf{0}}
\newcommand{\bp}{\mathbf{p}}
\newcommand{\bq}{\mathbf{q}}
\newcommand{\br}{\mathbf{r}}
\newcommand{\bs}{\mathbf{s}}
\newcommand{\bT}{\mathbf{T}}
\newcommand{\bu}{\mathbf{u}}
\newcommand{\bv}{\mathbf{v}}
\newcommand{\bw}{\mathbf{w}}
\newcommand{\bx}{\mathbf{x}}
\newcommand{\by}{\mathbf{y}}
\newcommand{\bz}{\mathbf{z}}
\newcommand{\bzero}{\mathbf{0}}
\newcommand{\nv}{\mathbf{0}}
\newcommand{\cA}{\mathcal{A}}
\newcommand{\cB}{\mathcal{B}}
\newcommand{\cC}{\mathcal{C}}
\newcommand{\cD}{\mathcal{D}}
\newcommand{\cE}{\mathcal{E}}
\newcommand{\cF}{\mathcal{F}}
\newcommand{\cG}{\mathcal{G}}
\newcommand{\cH}{\mathcal{H}}
\newcommand{\cI}{\mathcal{I}}
\newcommand{\cJ}{\mathcal{J}}
\newcommand{\cK}{\mathcal{K}}
\newcommand{\cL}{\mathcal{L}}
\newcommand{\cM}{\mathcal{M}}
\newcommand{\cN}{\mathcal{N}}
\newcommand{\cO}{\mathcal{O}}
\newcommand{\cP}{\mathcal{P}}
\newcommand{\cQ}{\mathcal{Q}}
\newcommand{\cR}{\mathcal{R}}
\newcommand{\cS}{\mathcal{S}}
\newcommand{\cT}{\mathcal{T}}
\newcommand{\cU}{\mathcal{U}}
\newcommand{\cV}{\mathcal{V}}
\newcommand{\cW}{\mathcal{W}}
\newcommand{\cX}{\mathcal{X}}
\newcommand{\cY}{\mathcal{Y}}
\newcommand{\cZ}{\mathcal{Z}}
\newcommand{\rA}{\mathrm{A}}
\newcommand{\rB}{\mathrm{B}}
\newcommand{\rC}{\mathrm{C}}
\newcommand{\rD}{\mathrm{D}}
\newcommand{\rE}{\mathrm{E}}
\newcommand{\rF}{\mathrm{F}}
\newcommand{\rG}{\mathrm{G}}
\newcommand{\rH}{\mathrm{H}}
\newcommand{\rI}{\mathrm{I}}
\newcommand{\rJ}{\mathrm{J}}
\newcommand{\rK}{\mathrm{K}}
\newcommand{\rL}{\mathrm{L}}
\newcommand{\rM}{\mathrm{M}}
\newcommand{\rN}{\mathrm{N}}
\newcommand{\rO}{\mathrm{O}}
\newcommand{\rP}{\mathrm{P}}
\newcommand{\rQ}{\mathrm{Q}}
\newcommand{\rR}{\mathrm{R}}
\newcommand{\rS}{\mathrm{S}}
\newcommand{\rT}{\mathrm{T}}
\newcommand{\rU}{\mathrm{U}}
\newcommand{\rV}{\mathrm{V}}
\newcommand{\rW}{\mathrm{W}}
\newcommand{\rX}{\mathrm{X}}
\newcommand{\rY}{\mathrm{Y}}
\newcommand{\rZ}{\mathrm{Z}}
\newcommand{\pv}{\overline}
\newcommand{\iu}{\mathrm{i}}
\newcommand{\ju}{\mathrm{j}}
\newcommand{\im}{\mathrm{i}}
\newcommand{\e}{\mathrm{e}}
\newcommand{\real}{\operatorname{Re}}
\newcommand{\imag}{\operatorname{Im}}
\newcommand{\Arg}{\operatorname{Arg}}
\newcommand{\Ln}{\operatorname{Ln}}
\DeclareMathOperator*{\res}{res}
\newcommand{\re}{\operatorname{Re}}
\newcommand{\im}{\operatorname{Im}}
\newcommand{\arsinh}{\operatorname{ar\,sinh}}
\newcommand{\arcosh}{\operatorname{ar\,cosh}}
\newcommand{\artanh}{\operatorname{ar\,tanh}}
\newcommand{\sgn}{\operatorname{sgn}}
\newcommand{\diag}{\operatorname{diag}}
\newcommand{\proj}{\operatorname{proj}}
\newcommand{\rref}{\operatorname{rref}}
\newcommand{\rank}{\operatorname{rank}}
\newcommand{\Span}{\operatorname{span}}
\newcommand{\vir}{\operatorname{span}}
\renewcommand{\dim}{\operatorname{dim}}
\newcommand{\alg}{\operatorname{alg}}
\newcommand{\geom}{\operatorname{geom}}
\newcommand{\id}{\operatorname{id}}
\newcommand{\norm}[1]{\lVert #1 \rVert}
\newcommand{\tp}[1]{#1^{\top}}
\renewcommand{\d}{\mathrm{d}}
\newcommand{\sij}[2]{\bigg/_{\mspace{-15mu}#1}^{\,#2}}
\newcommand{\abs}[1]{\lvert#1\rvert}
\newcommand{\pysty}[1]{\left[\begin{array}{@{}r@{}}#1\end{array}\right]}
\newcommand{\piste}{\cdot}
\newcommand{\qedhere}{}
\newcommand{\taumatrix}[1]{\left[\!\!#1\!\!\right]}
\newenvironment{augmatrix}[1]{\left[\begin{array}{#1}}{\end{array}\right]}
\newenvironment{vaugmatrix}[1]{\left|\begin{array}{#1}}{\end{array}\right|}
\newcommand{\trans}{\mathrm{T}}
\newcommand{\EUR}{\text{\unicode{0x20AC}}}
\newcommand{\SI}[3][]{#2\,\mathrm{#3}}
\newcommand{\si}[2][]{\mathrm{#2}}
\newcommand{\num}[2][]{#2}
\newcommand{\ang}[2][]{#2^{\circ}}
\newcommand{\meter}{m}
\newcommand{\metre}{\meter}
\newcommand{\kilo}{k}
\newcommand{\kilogram}{kg}
\newcommand{\gram}{g}
\newcommand{\squared}{^2}
\newcommand{\cubed}{^3}
\newcommand{\minute}{min}
\newcommand{\hour}{h}
\newcommand{\second}{s}
\newcommand{\degreeCelsius}{^{\circ}C}
\newcommand{\per}{/}
\newcommand{\centi}{c}
\newcommand{\milli}{m}
\newcommand{\deci}{d}
\newcommand{\percent}{\%}
\newcommand{\Var}{\operatorname{Var}}
\newcommand{\Cov}{\operatorname{Cov}}
\newcommand{\Corr}{\operatorname{Corr}}
\newcommand{\Tasd}{\operatorname{Tasd}}
\newcommand{\Ber}{\operatorname{Ber}}
\newcommand{\Bin}{\operatorname{Bin}}
\newcommand{\Geom}{\operatorname{Geom}}
\newcommand{\Poi}{\operatorname{Poi}}
\newcommand{\Hyperg}{\operatorname{Hyperg}}
\newcommand{\Tas}{\operatorname{Tas}}
\newcommand{\Exp}{\operatorname{Exp}}
\newcommand{\tdist}{\operatorname{t}}
\newcommand{\rd}{\mathrm{d}}\]
Poissonin jakauma
Toinen sovellusten kannalta erittäin tärkeä diskreetti todennäköisyysjakauma käsittelee suhteellisen harvinaisten, mutta keskimäärin vakiotahdilla riippumattomasti toistuvia tapahtumia. Annetaan aluksi jakauman määritelmä, ja palataan myöhemmin sen tulkintaan sovelluksissa.
Lause 4.3.2
Jos satunnaismuuttuja \(X\sim\Poi(\lambda)\), niin sen momentit generoiva funktio
\[M(t)=e^{-\lambda}e^{\lambda e^t},\]
sekä odotusarvo ja varianssi
\[\rE(X) = \Var(X) = \lambda.\]
Piilota/näytä todistus
Momentit generoivaksi funktioksi saadaan eksponenttifunktion sarjakehitelmän \(e^u = \sum\limits_{x=0}^{\infty}\frac{u^x}{x!}\) avulla
\[M(t) = \rE(e^{tX}) = \sum_{x = 0}^{\infty}e^{tx}\frac{\lambda^x}{x!}e^{-\lambda} = e^{-\lambda}\sum_{x = 0}^{\infty}\frac{(\lambda e^t)^x}{x!} = e^{-\lambda}e^{\lambda e^t}.\]
Täten
\[M'(t)=\lambda e^{-\lambda + t + \lambda e^t} \qquad\text{ja}\qquad M''(t)=\lambda\left(e^{-\lambda + t + \lambda e^t} + \lambda e^{-\lambda + 2t + \lambda e^t}\right)\]
ja näin saadaan \(\rE(X)=M'(0)=\lambda\) ja \(\Var(X)=M''(0)-M'(0)^2 = \lambda(1 + \lambda) - \lambda^2 =\lambda\).
Poissonin jakauman odotusarvo ja varianssi ovat siis yhtä suuret. Tämän jakauman tärkeä sovellus on sen käyttö stokastisten prosessien käsittelyssä silloin, kun ollaan kiinnostuneita tietyn tapahtuman \(A\) realisoitumisten lukumäärästä tietyllä aikavälillä. Oletetaan prosessille seuraavat ominaisuudet.
- Jos \(I_1,I_2,\ldots,I_n\) ovat pistevieraita (erillisiä) aikavälejä, niin tapahtuman \(A\) esiintymisten lukumäärät eri aikaväleillä ovat riippumattomia.
- Tapahtuman \(A\) esiintymisten keskimääräistä lukumäärää aikayksikössä voidaan pitää vakiona \(q\).
- Todennäköisyys sille, että \(A\) realisoituu hyvin lyhyellä aikavälillä \(\Delta t\) useammin kuin kerran, on likimain nolla.
Jos stokastinen prosessi toteuttaa oletukset 1–3 ja satunnaismuuttuja \(X\) kuvaa tapahtuman \(A\) esiintymisten lukumäärää aikavälillä \((t_1, t_2)\), niin voidaan osoittaa että
\[X\sim\Poi(q(t_2 - t_1)),\]
eli \(X\) noudattaa Poissonin jakaumaa parametrinaan \(\lambda = q(t_2 - t_1)\).
Esimerkki 4.3.3
Yksi gramma radiumin isotooppia lähettää keskimäärin \(3{,}57 \cdot 10^{10}\) \(\alpha\)-hiukkasta sekunnissa. Laske todennäköisyys sille, että yhden nanosekunnin (\(10^{-9}\)s) aikana se lähettää
- täsmälleen \(35\) \(\alpha\)-hiukkasta,
- \(27\), \(28\) tai \(29\) \(\alpha\)-hiukkasta.
Piilota/näytä ratkaisu
Radioaktiivinen hajoaminen toteuttaa varsin hyvin edellä esitellyt Poissonin prosessin oletukset. Olkoon \(X\) radium-näytteen lähettämien \(\alpha\)-hiukkasten lukumäärä nanosekunnissa, jolloin \(X \sim \Poi(\lambda)\), missä
\[\lambda = 3{,}57 \cdot 10^{10} \cdot 10^{-9} = 35{,}7.\]
Todennäköisyys sille, että nanosekunnissa vapautuu täsmälleen \(35\) \(\alpha\)-hiukkasta on
\[P(X = 35) = p(35; 35{,}7) = \frac{35{,}7^{35}}{35!}e^{-35{,}7} \approx 0{,}0668.\]
Ohjelmistojen Poissonin jakaumaan liittyvät tiheys- ja kertymäfunktiot ovat poisspdf
ja poisscdf
(Matlab), sekä dpois
ja ppois
(R). Sama tulos saataisiin siis Matlab-komennolla
tai R-komennolla
Todennäköisyys sille, että nanosekunnissa vapautuu \(27\), \(28\) tai \(29\) \(\alpha\)-hiukkasta on
\[\begin{split}\begin{aligned}
P(27 \leq X \leq 29) &= \sum_{x = 27}^{29}p(x; 35{,}7) = \sum_{x = 27}^{29}\frac{35{,}7^x}{x!}e^{-35{,}7} \\
&= e^{-35{,}7}\left(\frac{35{,}7^{27}}{27!} + \frac{35{,}7^{28}}{28!} + \frac{35{,}7^{29}}{29!}\right) \approx 0{,}0924.
\end{aligned}\end{split}\]
Matlab- ja R-komennot
poisscdf(29, 35.7) - poisscdf(26, 35.7)
ja
ppois(29, 35.7) - ppois(26, 35.7)
antavat saman tuloksen. Huomaa, että tapahtuman \(27 \leq X \leq 29\) todennäköisyys lasketaan kertymäfunktion \(F\) avulla erotuksena \(F(29) - F(26)\).
Huomautus 4.3.4
Poissonin jakaumaa voidaan soveltaa myös satunnaiskokeisiin, joissa ollaan kiinnostuneita tapahtuman \(A\) realisoitumien lukumäärästä tietyllä pituuden, pinta-alan tai tilavuuden osalla. Satunnaiskokeen tulee toteuttaa oletuksia 1–3 vastaavat oletukset, joissa aika korvataan sopivasti muilla käsitteillä.
Tietyissä tilanteissa Poissonin jakaumaa voidaan käyttää myös binomijakauman approksimoimiseen. Oletetaan, että satunnaismuuttuja \(X\sim\Bin(n, p)\), ja että \(np = \lambda\) on vakio. Jos nyt \(n\to\infty\), niin \(p = \frac{\lambda}{n} \to 0\). Tällöin
\[\lim_{n\to\infty}b\left(x; n, \frac{\lambda}{n}\right)=p(x; \lambda)\]
aina, kun \(x \in \N = \{0, 1, 2, \ldots\}\), sillä
\[\begin{split}\begin{aligned}
\binom{n}{x}\left(\frac{\lambda}{n}\right)^x\left(1-\frac{\lambda}{n}\right)^{n-x} &= \frac{n(n-1)\cdots(n-x+1)}{x!}\frac{\lambda^x}{n^x}\left(1-\frac{\lambda}{n}\right)^n\left(1-\frac{\lambda}{n}\right)^{-x}\\
&= \frac{\lambda^x}{x!}\frac{n}{n}\frac{n - 1}{n}\cdots\frac{n - x + 1}{n}\left(1 - \frac{\lambda}{n}\right)^n\left(1 - \frac{\lambda}{n}\right)^{-x} \\
&= \frac{\lambda^x}{x!}\left(1-\frac{1}{n}\right)\cdots\left(1-\frac{x-1}{n}\right)\left(1-\frac{\lambda}{n}\right)^n\left(1-\frac{\lambda}{n}\right)^{-x}\\
&\to\frac{\lambda^x}{x!}e^{-\lambda},
\end{aligned}\end{split}\]
kun \(n \to \infty\), sillä
\[\lim_{n \to \infty}\left(1 - \frac{1}{n}\right) = \cdots = \lim_{n \to \infty}\left(1 - \frac{x - 1}{n}\right) = \lim_{n\to\infty}\left(1 - \frac{\lambda}{n}\right)^{-x} = 1\]
ja eksponenttifunktion raja-arvomääritelmän mukaan raja-arvo
\[\lim_{n \to \infty}\left(1 - \frac{\lambda}{n}\right)^n = e^{-\lambda}.\]
Kyseisen lukujonon suppeneminen tapahtuu nopeasti silloin, kun \(\lambda \ll n\).
Lause 4.3.5
Jos \(n\)-toistokokeessa \(n\) on suuri, onnistumisen todennäköisyys on pieni \(p\) ja \(\lambda \ll n\), eli kyseessä on harvinainen tapahtuma hyvin monen toiston sarjassa, niin binomijakauma
\[\Bin(n, p) \approx \Poi(np).\]
Esimerkki 4.3.6
Tiedetään, että sadasta signaalista keskimäärin yksi välittyy virheellisesti. Lähetetään \(200\) toisistaan riippumatonta signaalia ja lasketaan todennäköisyys sille, että ainakin kolme signaalia välittyy virheellisesti. Olkoon satunnaismuuttuja \(X\) virhesignaalien lukumäärä, jolloin \(X\sim\Bin(200, 0{,}01)\). Tarkka todennäköisyys
\[\begin{split}\begin{aligned}
P(X \geq 3) &= 1 - P(X < 3) \\
&= 1 - \left(\binom{200}{0}0{,}01^0 \cdot 0{,}99^{200} + \binom{200}{1}0{,}01^1 \cdot 0{,}99^{199} + \binom{200}{2}0{,}01^2 \cdot 0{,}99^{198}\right)\\
&\approx 1 - (0{,}1340 + 0{,}2707 + 0{,}2720) \\
&= 0{,}3233.
\end{aligned}\end{split}\]
Kun approksimoidaan \(\Bin(200, 0{,}01) \approx \Poi(2)\), todennäköisyydeksi saadaan \(4\) desimaalin tarkkuudella sama tulos:
\[P(X \geq 3) \approx 1 - e^{-2}\left(\frac{2^0}{0!}+\frac{2^1}{1!}+\frac{2^2}{2!}\right) = 1 - e^{-2}(1+2+2) \approx 0{,}3233.\]
Poissonin jakaumalla ja eksponenttijakaumalla on seuraavanlainen yhteys.
Esimerkki 4.3.7
Oletetaan, että satunnaisen tapahtuman esiintymiskertojen lukumäärä \(X\) tietyllä aikavälillä \([0, t]\) noudattaa Poissonin jakaumaa. Jos tapahtumien keskimääräistä lukumäärää aikayksikössä merkitään luvulla \(\lambda>0\), niin aikavälille \([0, t]\) osuu \(\lambda t\) tapahtumaa ja \(X \sim \Poi(\lambda t)\) tiheysfunktiolla
\[f(x)=\frac{(\lambda t)^x}{x!}e^{-\lambda t}.\]
Olkoon ensimmäisen tapahtuman realisoitumisaika satunnaismuuttuja \(T\). Jos aikavälillä \([0,t]\) ei satu yhtään tapahtumaa, on \(T>t\). Tämän todennäköisyys
\[P(T>t)=P(X=0)=e^{-\lambda t},\]
joten komplementtitapahtuman todennäköisyys
\[P(T\leq t)=1-e^{-\lambda t}.\]
Näin on saatu satunnaismuuttujan \(T\) kertymäfunktio ja tiheysfunktio saadaan derivoimalla
\[f(t)=\frac{\rd}{\rd t}P(T \leq t)=\lambda e^{-\lambda t}.\]
Tämä jakauma on eksponenttijakauma. Tapahtumien aikavälit Poissonin prosessissa noudattavat siis eksponenttijakaumaa \(\Exp(\lambda)\), missä \(\lambda\) on tapahtumien keskimääräinen määrä aikayksikössä.