Tämä kurssi on jo päättynyt.
- MATH.APP.120
- 11. Liitteet
- 11.1 Taulukoita
\[\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\C}{\mathbb C}
\newcommand{\ba}{\mathbf{a}}
\newcommand{\bb}{\mathbf{b}}
\newcommand{\bc}{\mathbf{c}}
\newcommand{\bd}{\mathbf{d}}
\newcommand{\be}{\mathbf{e}}
\newcommand{\bff}{\mathbf{f}}
\newcommand{\bh}{\mathbf{h}}
\newcommand{\bi}{\mathbf{i}}
\newcommand{\bj}{\mathbf{j}}
\newcommand{\bk}{\mathbf{k}}
\newcommand{\bN}{\mathbf{N}}
\newcommand{\bn}{\mathbf{n}}
\newcommand{\bo}{\mathbf{0}}
\newcommand{\bp}{\mathbf{p}}
\newcommand{\bq}{\mathbf{q}}
\newcommand{\br}{\mathbf{r}}
\newcommand{\bs}{\mathbf{s}}
\newcommand{\bT}{\mathbf{T}}
\newcommand{\bu}{\mathbf{u}}
\newcommand{\bv}{\mathbf{v}}
\newcommand{\bw}{\mathbf{w}}
\newcommand{\bx}{\mathbf{x}}
\newcommand{\by}{\mathbf{y}}
\newcommand{\bz}{\mathbf{z}}
\newcommand{\bzero}{\mathbf{0}}
\newcommand{\nv}{\mathbf{0}}
\newcommand{\cA}{\mathcal{A}}
\newcommand{\cB}{\mathcal{B}}
\newcommand{\cC}{\mathcal{C}}
\newcommand{\cD}{\mathcal{D}}
\newcommand{\cE}{\mathcal{E}}
\newcommand{\cF}{\mathcal{F}}
\newcommand{\cG}{\mathcal{G}}
\newcommand{\cH}{\mathcal{H}}
\newcommand{\cI}{\mathcal{I}}
\newcommand{\cJ}{\mathcal{J}}
\newcommand{\cK}{\mathcal{K}}
\newcommand{\cL}{\mathcal{L}}
\newcommand{\cM}{\mathcal{M}}
\newcommand{\cN}{\mathcal{N}}
\newcommand{\cO}{\mathcal{O}}
\newcommand{\cP}{\mathcal{P}}
\newcommand{\cQ}{\mathcal{Q}}
\newcommand{\cR}{\mathcal{R}}
\newcommand{\cS}{\mathcal{S}}
\newcommand{\cT}{\mathcal{T}}
\newcommand{\cU}{\mathcal{U}}
\newcommand{\cV}{\mathcal{V}}
\newcommand{\cW}{\mathcal{W}}
\newcommand{\cX}{\mathcal{X}}
\newcommand{\cY}{\mathcal{Y}}
\newcommand{\cZ}{\mathcal{Z}}
\newcommand{\pv}{\overline}
\newcommand{\iu}{\mathrm{i}}
\newcommand{\ju}{\mathrm{j}}
\newcommand{\re}{\operatorname{Re}}
\newcommand{\im}{\operatorname{Im}}
\newcommand{\arsinh}{\operatorname{ar\,sinh}}
\newcommand{\arcosh}{\operatorname{ar\,cosh}}
\newcommand{\artanh}{\operatorname{ar\,tanh}}
\newcommand{\sgn}{\operatorname{sgn}}
\newcommand{\diag}{\operatorname{diag}}
\newcommand{\proj}{\operatorname{proj}}
\newcommand{\rref}{\operatorname{rref}}
\newcommand{\rank}{\operatorname{rank}}
\newcommand{\Span}{\operatorname{span}}
\newcommand{\vir}{\operatorname{span}}
\renewcommand{\dim}{\operatorname{dim}}
\newcommand{\alg}{\operatorname{alg}}
\newcommand{\geom}{\operatorname{geom}}
\newcommand{\id}{\operatorname{id}}
\newcommand{\norm}[1]{\lVert #1 \rVert}
\newcommand{\tp}[1]{#1^{\top}}
\renewcommand{\d}{\mathrm{d}}
\newcommand{\sij}[2]{\bigg/_{\mspace{-15mu}#1}^{\,#2}}
\newcommand{\abs}[1]{\lvert#1\rvert}
\newcommand{\pysty}[1]{\left[\begin{array}{@{}r@{}}#1\end{array}\right]}
\newcommand{\piste}{\cdot}
\newcommand{\qedhere}{}
\newcommand{\taumatrix}[1]{\left[\!\!#1\!\!\right]}
\newenvironment{augmatrix}[1]{\left[\begin{array}{#1}}{\end{array}\right]}
\newenvironment{vaugmatrix}[1]{\left|\begin{array}{#1}}{\end{array}\right|}\]
Taulukoita¶
Derivointikaavoja¶
(1)¶\[\begin{split}\begin{array}{cc|cc|cc}\hline
f(x) & f'(x) & f(x) & f'(x) & f(x) & f'(x) \\\hline
x^a & ax^{a - 1} & \sin x & \cos x & \sinh x & \cosh x \\[2ex]
x^{\frac{1}{a}} & \dfrac{x^{\frac{1}{a} - 1}}{a} & \cos x & -\sin x & \cosh x & \sinh x \\[2ex]
e^x & e^x & \tan x & \dfrac{1}{\cos^2 x} & \tanh x & \dfrac{1}{\cosh^2 x} \\[2ex]
a^x & a^x\ln a & \arcsin x & \dfrac{1}{\sqrt{1 - x^2}} & \arsinh x & \dfrac{1}{\sqrt{1 + x^2}} \\[2ex]
\ln x & \dfrac{1}{x} & \arccos x & -\dfrac{1}{\sqrt{1 - x^2}} & \arcosh x & \dfrac{1}{\sqrt{x^2 - 1}} \\[2ex]
\log_a x & \dfrac{1}{x\ln a} & \arctan x & \dfrac{1}{1 + x^2} & \artanh x & \dfrac{1}{1 - x^2} \\[2ex]\hline
\end{array}\end{split}\]
\[\begin{split}\begin{array}{cl}\hline
\text{Kaava} & \text{Nimi} \\\hline
D(cf(x)) = cf'(x) & \text{vakion siirto} \\
D(f(x) \pm g(x)) = f'(x) \pm g'(x) & \text{lineaarisuus} \\
D(f(x)g(x)) = f'(x)g(x) + f(x)g'(x) & \text{tulon derivointi} \\[3ex]
D\left(\dfrac{f(x)}{g(x)}\right) = \dfrac{f'(x)g(x) - f(x)g'(x)}{g(x)^2} & \text{osamäärän derivointi} \\[3ex]
D((f \circ g)(x)) = f'(g(x))g'(x) & \text{ketjusääntö} \\[3ex]
D(f^{-1}(y)) = \dfrac{1}{f'(x)}, \text{ kun } f(x) = y & \text{käänteisfunktion derivointi} \\[3ex]\hline
\end{array}\end{split}\]
Perusintegraaleja¶
(2)¶\[\begin{split}\begin{array}{ccl}\hline
&& \\[-3ex]
f(x) & \int f(x)\,\d x & \text{Huomioita} \\[1ex]\hline
&&\\[-1ex]
x^n & \dfrac{x^{n + 1}}{n + 1} + C & n \in \Z \setminus \{-1\}, \text{ ei voimassa pisteen } 0 \text{ yli jos } n < 0 \\[3ex]
x^a & \dfrac{x^{a + 1}}{a + 1} + C & a \in \R \setminus \{-1\}, \text{ voimassa kun } x > 0 \\[3ex]
\dfrac{1}{x} & \ln|x| + C & \text{ei voimassa pisteen } 0 \text{ yli} \\[3ex]
e^x & e^x + C & \\[3ex]
\sin x & -\cos x + C & \\[3ex]
\cos x & \sin x + C & \\[3ex]
\tan x & -\ln\left|\cos x\right| + C & \text{ei voimassa pisteiden } \dfrac{\pi}{2} + n\pi,\ n \in \Z \text{ yli} \\[3ex]
\dfrac{1}{\tan x} & \ln\left|\sin x\right| + C & \text{ei voimassa pisteiden } n\pi,\ n \in \Z \text{ yli} \\[3ex]
\dfrac{1}{\cos^2 x} & \tan x + C & \text{ei voimassa pisteiden } \dfrac{\pi}{2} + n\pi,\ n \in \Z \text{ yli} \\[3ex]
\dfrac{1}{\sin^2 x} & -\dfrac{1}{\tan x} + C & \text{ei voimassa pisteiden } n\pi,\ n \in \Z \text{ yli} \\[3ex]
\dfrac{1}{\sqrt{1 - x^2}} & \arcsin x + C & \text{voimassa kun } {-1} < x < 1 \\[3ex]
\dfrac{1}{1 + x^2} & \arctan x + C & \\[3ex]
\dfrac{1}{\sqrt{1 + x^2}} & \arsinh x + C & \\[3ex]
\dfrac{1}{\sqrt{x^2 - 1}} & \arcosh x + C & \text{ei voimassa kun } {-1} < x < 1 \\[3ex]
\dfrac{1}{1 - x^2} & \artanh x + C & \text{voimassa kun } {-1} < x < 1 \\[3ex]\hline
\end{array}\end{split}\]
Sarjakehitelmiä¶
\[\begin{split}\begin{array}{ll}\hline
\text{Sarjakehitelmä} & \text{Suppenemisväli} \\\hline
& \\[-1ex]
\displaystyle\dfrac{1}{1 - x} = \sum_{k = 0}^{\infty}x^k = 1 + x + x^2 + x^3 + x^4 + \cdots & -1 < x < 1 \\[3ex]
\displaystyle e^x = \sum_{k = 0}^{\infty}\dfrac{x^k}{k!} = 1 + x + \dfrac{x^2}{2} + \dfrac{x^3}{6} + \dfrac{x^4}{24} + \cdots & \R \\[3ex]
\displaystyle \sin x = \sum_{k = 0}^{\infty}\dfrac{(-1)^{k}x^{2k + 1}}{(2k + 1)!} = x - \dfrac{x^3}{6} + \dfrac{x^5}{120} - \dfrac{x^7}{5040} + \dfrac{x^9}{362880} - \cdots & \R \\[3ex]
\displaystyle\cos x = \sum_{k = 0}^{\infty}\dfrac{(-1)^kx^{2k}}{(2k)!} = 1 - \dfrac{x^2}{2} + \dfrac{x^4}{24} - \dfrac{x^6}{720} + \dfrac{x^8}{40320} - \cdots & \R \\[3ex]
\displaystyle\ln(1 + x) = \sum_{k = 0}^{\infty}\dfrac{(-1)^kx^{k + 1}}{k + 1} = x - \dfrac{x^2}{2} + \dfrac{x^3}{3} - \dfrac{x^4}{4} + \dfrac{x^5}{5} - \cdots & -1 < x \leq 1 \\[3ex]\hline
\end{array}\end{split}\]
Palautusta lähetetään...