This course has already ended.
				
			
		
		
		
		
		
		
		
			
	
	
  
  
    
    
      
                  
  
Taulukoita
Derivointikaavoja
| \(f(x)\) | 
\(f'(x)\) | 
\(f(x)\) | 
\(f'(x)\) | 
Kaava | 
Nimi | 
 | 
  | 
  | 
  | 
  | 
  | 
| \(x^a\) | 
\(ax^{a - 1}\) | 
\(x^{\frac{1}{a}}\) | 
\(\frac{x^{\frac{1}{a} - 1}}{a}\) | 
\((cf)' = cf'\) | 
vakion siirto | 
| \(e^x\) | 
\(e^x\) | 
\(\ln x\) | 
\(\frac{1}{x}\) | 
\((f \pm g)' = f' \pm g'\) | 
lineaarisuus | 
| \(a^x\) | 
\(a^x\ln a\) | 
\(\log_a x\) | 
\(\frac{1}{x\ln a}\) | 
\((fg)' = f'g + fg'\) | 
tulon derivointi | 
| \(\sin x\) | 
\(\cos x\) | 
\(\arcsin x\) | 
\(\frac{1}{\sqrt{1 - x^2}}\) | 
\(\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}\) | 
osamäärän derivointi | 
| \(\cos x\) | 
\(-\sin x\) | 
\(\arccos x\) | 
\(-\frac{1}{\sqrt{1 - x^2}}\) | 
\((f \circ g)' = (f' \circ g)g'\) | 
ketjusääntö | 
| \(\tan x\) | 
\(\frac{1}{\cos^2 x}\) | 
\(\arctan x\) | 
\(\frac{1}{1 + x^2}\) | 
\((f^{-1})' = \frac{1}{(f' \circ f^{-1})}\) | 
käänteisfunktion derivointi | 
| \(\sinh x\) | 
\(\cosh x\) | 
\(\operatorname{ar\,sinh}x\) | 
\(\frac{1}{\sqrt{1 + x^2}}\) | 
  | 
  | 
| \(\cosh x\) | 
\(\sinh x\) | 
\(\operatorname{ar\,cosh}x\) | 
\(\frac{1}{\sqrt{x^2 - 1}}\) | 
  | 
  | 
| \(\tanh x\) | 
\(\frac{1}{\cosh^2 x}\) | 
\(\operatorname{ar\,tanh}x\) | 
\(\frac{1}{1 - x^2}\) | 
  | 
  | 
 
Perusintegraaleja
 | 
  | 
  | 
| \(f(x)\) | 
\(\int f(x)\,\mathrm{d}x\) | 
Huomioita | 
 | 
  | 
  | 
| \(x^n\) | 
\(\frac{x^{n + 1}}{n + 1} + C\) | 
\(n \in \mathbb Z\setminus \{-1\}\), ei voimassa pisteen \(0\) yli jos \(n < 0\) | 
| \(x^a\) | 
\(\frac{x^{a + 1}}{a + 1} + C\) | 
\(a \in \mathbb R\setminus \{-1\}\), voimassa kun \(x > 0\) | 
| \(\frac{1}{x}\) | 
\(\ln|x| + C\) | 
ei voimassa pisteen \(0\) yli | 
| \(e^x\) | 
\(e^x + C\) | 
  | 
| \(\sin x\) | 
\(-\cos x + C\) | 
  | 
| \(\cos x\) | 
\(\sin x + C\) | 
  | 
| \(\tan x\) | 
\(-\ln|\cos x| + C\) | 
ei voimassa pisteiden \(\frac{\pi}{2} + n\pi\), \(n \in \mathbb Z\) yli | 
| \(\frac{1}{\tan x}\) | 
\(\ln|\sin x| + C\) | 
ei voimassa pisteiden \(n\pi\), \(n \in \mathbb Z\) yli | 
| \(\frac{1}{\cos^2 x}\) | 
\(\tan x + C\) | 
ei voimassa pisteiden \(\frac{\pi}{2} + n\pi\), \(n \in \mathbb Z\) yli | 
| \(\frac{1}{\sin^2 x}\) | 
\(-\frac{1}{\tan x} + C\) | 
ei voimassa pisteiden \(n\pi\), \(n \in \mathbb Z\) yli | 
| \(\frac{1}{\sqrt{1 - x^2}}\) | 
\(\arcsin x + C\) | 
voimassa kun \(-1 < x < 1\) | 
| \(\frac{1}{1 + x^2}\) | 
\(\arctan x + C\) | 
  | 
| \(\frac{1}{\sqrt{1 + x^2}}\) | 
\(\operatorname{ar\,sinh}x + C\) | 
  | 
| \(\frac{1}{\sqrt{x^2 - 1}}\) | 
\(\operatorname{ar\,cosh}x + C\) | 
ei voimassa kun \(-1 < x < 1\) | 
| \(\frac{1}{1 - x^2}\) | 
\(\operatorname{ar\,tanh}x + C\) | 
voimassa kun \(-1 < x < 1\) | 
 
Sarjakehitelmiä
| Sarjakehitelmä | 
Suppenemisväli | 
 | 
  | 
| \(\frac{1}{1 - x} = \sum_{k = 0}^{\infty}x^k = 1 + x + x^2 + x^3 + x^4 + \cdots\) | 
\(-1 < x < 1\) | 
| \(e^x = \sum_{k = 0}^{\infty}\frac{x^k}{k!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \cdots\) | 
\(\mathbb R\) | 
| \(\sin x = \sum_{k = 0}^{\infty}\frac{(-1)^{k}x^{2k + 1}}{(2k + 1)!} = x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + \frac{x^9}{362880} - \cdots\) | 
\(\mathbb R\) | 
| \(\cos x = \sum_{k = 0}^{\infty}\frac{(-1)^kx^{2k}}{(2k)!} = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + \frac{x^8}{40320} - \cdots\) | 
\(\mathbb R\) | 
| \(\ln(1 + x) = \sum_{k = 0}^{\infty}\frac{(-1)^kx^{k + 1}}{k + 1} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \cdots\) | 
\(-1 < x \leq 1\) |